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ABSTRACT

Vulnerability can lead to data loss, privacy leakage and financial loss. Accurate detection and 
identification of vulnerabilities is essential to prevent information leakage and APT attacks. This 
paper explores the possibility of digging the valuable information in vulnerability reports deeply. We 
propose a new model, VCGERG, which products a graph using key information from vulnerability 
reports and embeds the graph into the vector space using a keywords-LINE graph embedding algorithm 
based on the attention of neighboring nodes. VCGERG model uses the OVR random forest algorithm 
to classify vulnerabilities. Our model can get the complicated local and global information of the 
graph in large-scale dataset and achieve better results. In order to verify the effectiveness of our 
model, it is evaluated on many experiments. Compared with other models, our method has a higher 
accuracy rate of 0.975.

KEyWoRdS
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Vulnerability is a flaw in the specific implementation of hardware, software, protocols, or system 
security policies. It is used by attackers to access or destroy the system without authorization. The 
National Vulnerability Database (NVD) (National Institute of Standards and Technology [NIST], 
2023a) provides data on the subject as shown in Figure 1. The figure shows that the total number of 
vulnerabilities reached 25,102 in 2022, a significant increase of 24.5% compared with the previous year. 
Thus, the escalating severity of cybersecurity issues has prompted researchers to focus on identifying 
and classifying these vulnerabilities. However, the vast number and heterogeneity of vulnerability 
information pose a significant challenge to be able to detect and classify vulnerabilities quickly.

Certain institutions have now organized identified vulnerabilities. Common Weakness 
Enumeration (CWE) (2023) provides an extensive list of prevalent security weaknesses, where each 
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one corresponds to a different class of software bugs or defects. The latest CWE list, version 4.14, lists 
1,362 different CWE-IDs and provides a comprehensive framework for identifying and classifying 
common security weaknesses. Researchers can facilitate systematic examination and analysis of the 
vulnerabilities using this framework. Attackers exploit vulnerabilities taking advantage of bugs or 
flaws in software systems. For example, microweber security vulnerability (CVE-2022-2353) (NIST, 
2023b) appeared in July 2022. It is classified as a “cross-site request forgery” (CSRF) vulnerability 
(CWE-352), which allows an attacker to steal cross-site request forged tokens, access content from 
the same site, and redirect. This vulnerability poses risks such as data leakage and user privacy losses. 
Another notable example is the Apple iOS and macOS out-of-bounds write vulnerability (CVE-2022-
32893) (NIST, 2023c), which appeared in August 2022. It is classified as an “out-of-bounds write” 
vulnerability (CWE-787).

In addition to CWE, vulnerability reports released by the NVD and security vendors have 
significant value in understanding and discovering vulnerability characteristics. The reports include 
summary information, the operating system and software type, threatening behavior, MD5, and 
other text information. The reports are unstructured and consist of text and tables. We can extract 
and reorganize the information from a vulnerability report. We can then describe vulnerability 
features from a more diverse perspective and construct a vulnerability feature library, which can be 
used to detect vulnerabilities automatically. In security and confidentiality applications, timely deep 
learning analysis and classification of data and information are of great significance (Aljarf et al., 
2023; Altalhi & Gutub, 2021; Sufi et al., 2023). Using machine learning and deep learning methods 
further improves the accuracy of the classification results compared with traditional methods (Aljarf 
et al., 2023; Gutub et al., 2023; Hemalatha et al., 2023; Roy et al., 2023). This paper is dedicated to 
obtaining and analyzing the information in vulnerability reports and classifying the vulnerabilities.

We propose a graph structure to represent heterogeneous information in vulnerability reports, 
incorporate the LINE algorithm based on the attention mechanism of neighboring nodes to characterize 
vulnerabilities, and use the one VS rest (OVR) random forest model to identify the vulnerabilities.

Our three main contributions with this research are as follows:

1.  Vulnerability report graph representation method. We propose an unstructured and heterogeneous 
information representation method using a graph. It breaks the limitation of the traditional approach 

Figure 1. Amount of Vulnerability Data Released by NVD
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that only analyzes certain vulnerability features, such as attack behaviors, which enables us to build 
connections between multilevel and multiangle vulnerability features through the graph.

2.  Understanding and extracting features of vulnerability report graphs. The vulnerability report 
graph is built by summary information, the operating system and software type, threatening 
behavior, and CWE-ID. To illustrate how to understand the graph and represent its features, we 
propose a new “vulnerability classification with a graph embedding algorithm on vulnerability 
report graphs” (VCGERG) model that combines the keywords-LINE graph embedding algorithm 
with the attention mechanism of neighboring nodes. Thus, from a large number of vulnerability 
reports, our approach lends to discover potential knowledge, patterns, and regularities that can 
help improve the analysis strategy and performance of vulnerability discovery.

3.  Experiments and result analysis. We use the OVR random forest model to identify and classify 
vulnerabilities. Outlined in this paper, we designed many experiments on several datasets. The 
experimental results show that our method improves all evaluation metrics significantly, which 
verifies the effectiveness of our proposed model. Our method has high accuracy of 0.975.

In the next section, we detail several recent research efforts related to vulnerability studies. 
Then we describe the research methodology. We then offer a review of the process of validation by 
comparing ours with other methods to illustrate its accuracy and effectiveness. Finally, we summarize 
our work and discuss possible future research directions in the last section.

RElATEd WoRKS

Sun et al. (2021) proposed a vulnerability detection model, VDSimilar, based on code similarity 
using BiLSTM and attention network integrated into the Siamese model to get the similarity between 
two vulnerability functions and the difference between the vulnerability function and the patch 
function. By comparing the tested program to known vulnerability codes to discriminate whether 
the code is vulnerable, Hu et al. (2023) extracted slices of C/C++ source code and implemented 
an efficient and accurate vulnerability detection and interpretation method using a graph neural 
network. Zou et al. (2019) proposed a multiclass vulnerability detection system. They introduced 
the concept of code attention, using local features to detect vulnerability types. They completed 
multiclass vulnerability detection by considering program control dependencies during program 
slice construction. Wartschinski et al. (2022) constructed the Vudenc vulnerability detection model to 
implement Python code detection. Python codes are trained by a word2vec model and represented as 
vectors. The LSTM (Long Short-Term Memory) network then classifies the sequence of vulnerable 
code tokens at a fine-grained level and highlights with different colors specific regions of the source 
code that may contain vulnerabilities.

Compared with source code, vulnerability reports can represent the characteristic information of 
vulnerability more intuitively and are released by authoritative security organizations and vendors. The 
content is reliable and trustworthy. Aljedaani et al. (2020) used the latent Dirichlet allocation (LDA) 
to classify security bug reports (SBRs) in the Chromium project. They found the potential topics in 
the SBR text and proved they were very close to vulnerability types. Alperin et al. (2020) used the 
LIME model to interpret vulnerability description and proposed the GenSim latent semantic indexing 
module to create a latent semantic analysis (LSA) for each category. Aota et al. (2020) vectorized 
the vulnerability information on the NVD with a bag-of-words model (BoW). They used the Boruta 
algorithm to select meaningful features (e.g., CWE-ID) and random forest (RF) for classification. Han 
et al. (2017) used only vulnerability descriptions and CVSS (2022) scores from the CVE database 
(CVE, 2017) to predict vulnerability severity. It used a skip-gram word vector model and a single-
layer CNN for classification. Han et al. (2018) extracted the CWE-ID text description and expected 
consequences of the vulnerability report on CWE to construct a knowledge graph. Additionally, they 
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used a graph embedding algorithm to get a low-dimensional vector, effectively supporting various 
inference tasks for vulnerabilities.

Graph embedding algorithms aim to map nodes to low-dimensional vectors in a graph, preserving 
the structural relationships between nodes and allowing otherwise complex graph data to be represented 
more efficiently in vector space. DeepWalk (Perozzi et al., 2014) captures the structural information 
of a graph by randomly wandering through it and learning the low-dimensional representations using 
the skip-gram model. Node2vec (Grover & Leskovec, 2016) captures the structural information of a 
graph by introducing flexible stochastic wandering strategies, including breadth-first and depth-first, 
to balance local and global structures. LINE (Tang et al., 2015) is specifically designed to deal with 
large-scale datasets in the real world. It plays a vital role in representing high-dimensional graph 
structures in low-dimensional vector spaces using the local and global structure between nodes and 
nodes in the graph. LINE graph embedding algorithm optimizes the local structure vector of each 
node in the graph using first-order similarity. It optimizes the global structure vector using second-
order similarity.

These studies, however, did not use the total content of the current report; they either focused on 
the vulnerability description part or other single attributes such as CWE-ID. Certain descriptions in the 
report, however, could more precisely find useful information. In addition, natural language may have 
limitations in analyzing vulnerability text information. To analyze the report more comprehensively 
and effectively, it is necessary to explore more dimensions of information.

VCGERG ModEl

The VCGERG model has three parts. To better illustrate the framework proposed in this paper, we 
first provide an overview of the framework before outlining the details. The following subsection 
describes the keywords extraction method and vulnerability report graph construction method. Then 
a review of the main principles of the LINE graph embedding model is presented, followed by a 
description of the neighbor nodes’ attention mechanism proposed in this paper. An introduction of 
the OVR random forest multi-classification model concludes this section.

Traditional LINE algorithms are capable of comprehensively analyzing structured vulnerability 
report information. However, it cannot analyze unstructured vulnerability descriptions effectively. 
Vulnerability description is an overview of vulnerability, which is unstructured textual information 
provided by authoritative domain experts. Vulnerability description is an essential source of 
information for vulnerability report analysis.

While dealing with long text, the LINE algorithm cannot capture the fine-grained semantic 
relationships between all words or deal with long-distance semantic associations. The LINE algorithm 
may lose critical information. In this paper, we propose a novel keywords-LINE graph embedding 
model that integrates the neighbor node attention mechanism to process vulnerability description 
directly.

Figure 2 illustrates the framework of the proposed method, which depicts three closely connected 
modules: the vulnerability report graph construction module, the vulnerability report graph vectorized 
module, and the vulnerability classification module. The vulnerability report graph construction 
module is responsible for obtaining and processing the relevant information in the reports. Then, 
the LINE graph embedding algorithm, which contains the attention mechanism of neighbor nodes, 
vectorizes the vulnerability report graph node information and transforms the graph into a low-
dimensional vector space. Finally, the vulnerability classification module employs the OVR random 
forest algorithm to classify vulnerabilities accurately.

Construction of Vulnerability Reporting diagrams
Vulnerability reports contain structured and unstructured data. The structured portion provides intuitive 
information about the characteristics of the vulnerability such as attack path and attack complexity. 
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The unstructured vulnerability description text is often long, complex, and diverse. Figure 3 shows a 
small portion of structured and unstructured data from the intercepted Alibaba Cloud Vulnerability 
Database (AVD) (2023) CVE-2022-2353 vulnerability report.

Traditional LINE graph embedding algorithms cannot be used directly on unstructured data, 
and we propose the keywords-LINE algorithm for unstructured data processing. An unstructured 
representation of vulnerability report description is created by extracting keywords through natural 
language processing techniques. Structured parts can be extracted from the reports. Figure 4 shows 
the process of constructing a vulnerability report graph.

The number of vulnerabilities in the AVD is large and diverse, and the data processing includes 
the following steps:

1.  Data screening and data cleaning. A small percentage of security vulnerability reports in 
the database contain incomplete information. In order to get as many complete reports as 
possible to ensure the quality of the dataset, we used a data screening process. Data screening 
ensures that the reports contain at least four or more vulnerability features. Data screening 
preserves relatively complete vulnerability reports and removes incomplete ones. Some 
complete vulnerability reports may have useless information, such as website links, which 
can be removed by regular expressions.

Figure 2. Structural Framework of the Vulnerability Report Analysis Classification

Figure 3. Small Portion of Structured and Unstructured Data

Figure 4. Vulnerability Report Graph Construction Process
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2.  Natural language processing of unstructured data. We used natural language processing techniques 
to extract keywords from vulnerability descriptions. We constructed a deactivation thesaurus 
to delete unimportant words in the vulnerability descriptions to improve the quality of text 
features. The vulnerability descriptions are partially subdivided into word sequences using a 
word segmentation technology, and the keywords are selected using the term frequency-inverse 
document frequency (TF-IDF) algorithm. TF-IDF is a widely used statistical technique in natural 
language processing. The core TF-IDF algorithm idea is to measure the significance of a word 
based on its frequency in one class and its frequency in others. When a word occurs frequently 
in a class of vulnerabilities that does not happen in other classes, it is selected as the keyword.

TF
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In formula (2), D  denotes the total number of all vulnerability description documents,
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TF-IDF is calculated by formula (3):
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After calculating the TF-IDF value of word w
i
, the TF-IDF value is used as the weight of word 

w
i
. Then, the words which have high weights are selected as the keywords of the vulnerability 

description.

3.  Entity identification, feature identification, relationship extraction, and knowledge fusion. The 
report graph consists of two types of entities. Entities comprise vulnerability and feature entities. 
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The vulnerability entity node has vulnerability a name and attributes (CVE-ID, vulnerability 
source, disclosure time); the feature entity describes the vulnerability attributes such as 
vulnerability category, CWE-ID as a categorization label, CVSS3 score, attack path, attack 
complexity, privilege requirement, type of affected software, and keywords of vulnerability 
description. It is necessary to analyze and fuse the relationship between vulnerability entities 
and feature entities to provide data support for constructing graphs.

4.  Construction of vulnerability report graph. The vulnerability report graph is composed of 
vulnerability entities (V), relationships (R) and feature entities (F). Neo4j is a high-performance 
graph database specialized in storing, managing, and querying graph data. In this paper, we 
constructed vulnerability entity nodes and feature entity nodes on Neo4j using cypher language 
and stored attributes in vulnerability entity nodes. We constructed the relationship between the 
vulnerability entity nodes and the feature entity nodes, which is represented in the graph in the 
form of vulnerability entity (V)-[: relationship(R)]→feature entity (F). Among them, V represents 
a specific vulnerability, denoted by CVE-ID; R represents the name of the vulnerability feature, 
and F represents the specific attribute values corresponding to the feature. For example, if the 
attack path of the CVE-2022-2353 vulnerability is the network, we can represent it in the diagram 
as CVE-2022-2353(V)-[: Attack Path(R)]→Network(F).

Organizing the vulnerability report diagram in this way makes it possible to visualize the complex 
relationships between vulnerability entities and features. Figure 5 shows the part of the vulnerability 
report graph. The large red nodes distributed throughout the center of the graph represent vulnerability 
entity nodes; the small blue nodes distributed throughout the edge of the graph represent feature 
entity nodes.

lINE diagram Embedding Algorithm
LINE aims to represent each target node’s local and global structure in the graph in a low-dimensional 
vector space. The core idea of the LINE graph embedding algorithm is to optimize the local structure 
vectors by using first-order similarity and optimize the global structure vectors by using second-order 
similarity to vectorize the high-dimensional graph nodes into a low-dimensional space. Following 
is the explanation of each concept.

First-order similarity: If there exists a directly connected edge between two nodes, the two nodes 
have high first-order similarity (or 0 if it does not exist), which should be close to each other in the 

Figure 5. Part of the Vulnerability Report Graph Display
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embedding space. As shown in Figure 6, the two vulnerability nodes and the feature nodes in the 
report graph, the entity node CVE-2022-34201 has the keywords “missing” and “permission” by 
TF-IDF extracted from its vulnerability description. However, the entity node CVE-2022-34180 has 
only the keyword, “permission.” Therefore, we can assume that the CVE-2022-34180 vulnerability 
has a substantial first-order similarity to the keyword “permission,” but the first-order similarity of 
the keyword “missing” is 0.

Second-order similarity: If there are no directly connected edges between two nodes, they have 
many neighboring nodes in common. The two points have a high second-order similarity. Second-
order similarity preserves the global structure well, which complements that first-order similarity 
ignores the global structure. Two nodes possessing higher second-order similarity should also behave 
close to each other in the second-order embedding space. For example, in Figure 6, the vulnerability 
entity node CVE-2022-34180 and the vulnerability entity node CVE-2022-34201 have no directly 
connected edges (first-order similarity is 0). These two entities have common neighbor nodes, such 
as they have the same usability, interaction, complexity, utilization, influence, path, and vulnerability 
description, and keyword “permission,” so these two nodes have high second-order similarity.

First-Order Similarity Optimization Objective
The LINE algorithm first randomly initializes the embeddings that define each node. The joint 
probability between each two points is as formula (4):
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Figure 6. Graph of Two Vulnerability Nodes
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After obtaining the joint probability distribution and the empirical probability, KL measures the 
distance between two probability distributions in the same event space:

O d p p
1 1 1
= ( ) ( )( )ˆ ·,· , ·,·  (6)

In formula (6), d ·,·( )  is the distance between the two distributions; the KL distance is set as a 
loss function for training. The KL distance is calculated in formula (7) after ignoring the constant 
term:
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Second-Order Similarity Optimization Objective
For second-order similarity, each node is composed of two embedding vectors. One is the vector 
representation of the node itself, and the other is the vector representation of the node when it is the 
context vertex of other nodes. The probability of generating a neighbor node y given the node x is:
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In formula (8), V  is the number of contextual vertices.
The optimization objective is calculated by formula (9):
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In formula (10), w
xy

 is the edge power of (x,y).
Neglecting the constant term is calculated by formula (11):
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Using negative sampling to optimize the objective function improves the efficiency of computing 
second-order similarity. When it optimizes parameters using gradient descent, the edge weight 
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coefficient w
xy

 is multiplied by the gradient, which makes it challenging to select the appropriate 
learning rate if the variance of the edge weights in the graph. It is significant. By default, all edge 
weights are set to 1, solving the learning rate selection problem.

In this experiment, we assigned embedding vectors randomly to initialize each vulnerability entity 
node and feature entity node in the report graph. Subsequently, the LINE graph embedding algorithm 
trains the vector representation of each node. As the number of iterations increases, the LINE graph 
embedding model continuously updates the vector representations of the nodes by capturing the local 
and global similarities between the nodes. Vulnerable entity nodes with first-order and second-order 
similarities are presented in the embedding vector space.

Neighboring Nodes’ Attention Mechanism
The neighboring nodes’ attention mechanism considers the relationship between a node and its 
neighboring nodes to improve the representation of the node. The LINE graph embedding algorithm 
initializes the mapping of graph nodes into low-dimensional embedding vectors by calculating the 
attention weights between a node and its neighboring nodes. These weights indicate the level of 
attention a node pays to its neighboring nodes, and different nodes pay different levels of attention 
to their neighboring nodes.

We used dot product to calculate the similarity of the second-order embedding vectors of node 
i and node j. The keywords-LINE model introduces the neighbor node attention mechanism, which 
can capture the correlation and similarity between nodes more accurately. Thus, similar vulnerability 
embedding vectors can be represented more similarly in order to improve the effectiveness of 
vulnerability classification.

oVR Random Forest Multi-Classification Algorithm
OVR random forest multiclass classifier is an extended classification method for solving multi-
classification problems. The algorithm creates K-independent binary classifiers for a dataset with 
K categories. In each classifier, only one category i is considered a positive example, and the other 
K-1 categories are negative examples. Each binary classification constructs an independent random 
forest classifier. In the training phase, the training set is input to the random forest classifier to train. 
In the prediction phase, each random forest classifier receives prediction samples for prediction 
and determines the final multi-classification result based on voting. The algorithm decomposes the 
multi-classification problem into multiple classification problems, with each subproblem solved by 
a separate random forest model.

The vulnerability entity node vectors after first-order similarity and second-order similarity 
embedding are input into the OVR random forest multiclass classifier for classification. During the 
training phase, it creates the same number of independent random forest sub models with the total 
number of vulnerability categories. The purpose of each sub model is to distinguish the vulnerabilities 
of the corresponding category from the other categories as much as possible. In the testing phase, 
the test dataset embedding vectors are fed into each trained random forest multiclass classifier sub 
model for prediction, and each sub model provides a classification prediction for that vulnerability 
node and votes, then obtains the final classification result.

This classification strategy makes the model more independent in learning each category’s 
features and helps classify categories with unbalanced data effectively. It is more suitable for the 
recognition, verification, and classification of multiple categories and multiple identities by training 
unique classifiers for each category. However, OVR random forest multiple classifiers tend to add 
extra computation overhead and increase the training time of the model.

Compared with other methods, our method adopts the vulnerability report graph to express 
the structured and unstructured information. The report graph can better handle the many-to-many 
and multilevel relationships between entities and model the complex structure of vulnerability 
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information more accurately. Keywords-LINE can embed the complicated local and global structures 
of the graph into vector space in a large-scale dataset. With the introduction of the neighbor node 
attention mechanism, keywords-LINE can capture the similar global structure of the graph better. 
OVR random forest classifier can train the unique vector characteristics of each type of vulnerability 
to better distinguish it from other vulnerabilities.

ExPERIMENT ANd RESulTS

Vulnerability dataset
Security vulnerability data has the characteristics of large data volume, diverse vulnerability features, 
distinguishing difficulty, and often requiring manual detection. Vulnerability reports can provide 
a detailed description of vulnerability characteristics, but there are unstructured and multisource 
heterogeneity situations.

AVD not only includes vulnerability reports from MITRE’s CVE Vulnerability Database but also 
works closely with China National Computer Network Emergency Response Center (2023), China 
National Vulnerability Database (2023), and China National Vulnerability Database of Information 
Security (2023). So, it has the advantages of authoritative vulnerability reports, fast updates, and a 
large amount of vulnerability data. It is worth noting that a significant portion of the publicly available 
vulnerability features in the AVD are presented in a structured form, as exemplified by the information 
provided in Table 1. The structured expression improves the usability of the database and the efficiency of 
data analysis and processing. The extraction of keywords from the unstructured vulnerability description 
part compensates for the lack of specificity of structured vulnerability data and enriches its diversity. The 
AVD contains many different kinds of data, comprehensively collects the information of vulnerability 
reports, and conducts vulnerability classification efficiently and accurately.

The experiments described in this research use public security vulnerability reports from 
June 1, 2022, to December 31, 2022, in the AVD. Across the eleven types of vulnerabilities with 
the highest number of vulnerability reports, 4,058 vulnerability reports were selected, and 52,982 
features were extracted.

Figure 7 shows the percentage of these eleven types of vulnerabilities among all classes of 
vulnerabilities in the last five years. With the detailed data for each type of vulnerability presented in 
Table 2, we observed a significant difference in the number of vulnerabilities. Conducting experiments 
with this data-imbalanced dataset genuinely reflects the real-world situation where the number of 
vulnerabilities is uneven. Table 3 shows the keywords for each type of vulnerability selected by the 
TF-IDF algorithm.

According to our methodology, ternaries (vulnerability entities, feature entities, and relationships) 
are extracted from the vulnerability report to construct the vulnerability report graph and stored in 
the Neo4j graph database. The vulnerability report graph consists of 4,058 vulnerability entity nodes, 
109 classes of feature nodes, and 52,982 relationships.

Experimental Results and Conclusion Analysis
In this section we verify the validity of our method. To evaluate classification results, the accuracy, 
F

micro
1 , F

macro
1 , and F

weighted
1  are introduced.

Classification Results Comparison of Experimental Results 
of Several Graph Embedding Algorithms
In the experiment, we used the DeepWalk graph embedding algorithm, node2vec graph embedding 
algorithm, and LINE graph embedding algorithm combined with different OVR classifiers to conduct 
comparative experiments to compare the performances of different graph embedding models in 
processing vulnerability report graphs. Table 4 shows the specific evaluation metrics.
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Table 1. Vulnerability Information Display

Data Type Vulnerability Features

Structured data

CVE-ID

Vulnerability name

Vulnerability source

CWE name

CWE-ID

NVD published date

CVSS3 score

Utilization

Patch status

Attack path

Attack complexity

Privileges required

Scope

User interaction

Availability impact

Confidentiality impact

Integrity impact

Affected software types

Affected software vendors, products

Affected software version, affected area

Unstructured data
Vulnerability description

solution suggestions

Figure 7. The Number of Eleven Types of Vulnerabilities Per Year as a Percentage
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By comparing the LINE model with the DeepWalk and node2vec models in the same classifier, 
it can be seen that classification accuracy of the LINE model is slightly higher than the other two 
models. The LINE method can discover similar characteristics between similar vulnerabilities by 
better preserving the local and global structure of the vulnerability report graph and embedding the 
graph nodes into the vector space using the optimized loss function. At the same time, the LINE model 
performs better in larger datasets, and allows similar vulnerabilities to be more closely represented 
in vector space.

Under the same graph embedding algorithm, the OVR random forest classifier is more accurate. 
When combined with graph embedding tasks, the OVR random forest classifier shows the best results 
compared with other OVR classifiers. It can deal with high-dimensional features and large-scale 
nonlinear data and train in the multiclass binary more effectively. It is able to capture the similar 
expression properties of similar vulnerabilities in the vector space and distinguish the differences in 
the vector space more accurately.

Classification Results Comparison of Various Keywords-LINE Structure
In order to compare various keywords-LINE structures, we offer the comparison of keywords-LINE 
only first-order similarity model, only second-order similarity model, and complete keywords-LINE 
model. Table 5 shows the experimental results.

From Table 5, first-order similarity is more critical than second-order similarity. This indicates 
that when the vulnerability report graph is too sparse and the number of neighboring nodes is small, 
the second-order similarity may become inaccurate, and even the performance of the model using 
only LINE second-order similarity is not as good as that of the DeepWalk model and the node2vec 
model. The keywords-LINE model combining first-order similarity and second-order similarity has 

Table 2. Detailed Data of Each Type of Vulnerability

Vulnerability CWE-
ID

Number of Vulnerable 
Entities

Number of Feature 
Entities

Out-of-bounds write CWE-
787 774 9694

Improper neutralization of input during web Page 
Generation (cross-site scripting) CWE-79 1114 15201

Improper neutralization of special elements used in an 
SQL command (SQL injection) CWE-89 657 9093

Cross-site request forgery (CSRF) CWE-
352 253 3347

Missing authorization CWE-
862 139 1721

Improper neutralization of special elements used in a 
command (command injection) CWE-77 136 1733

Improper input validation CWE-20 190 2649

Improper limitation of a pathname to a restricted 
directory (path traversal) CWE-22 201 2574

Out-of-bounds read CWE-
125 282 3086

Improper authentication CWE-
287 149 1827

Use after free CWE-
416 163 2057
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Table 3. Keywords for Each Type of Vulnerability

CWE-ID Keywords CWE-ID Keywords

CWE-787

overflow

CWE-79

site

stack scripting

buffer XSS

write stored

out of bounds plugin

CWE-89

SQL

CWE-352

CSRF

injection forgery

php request

parameter admin

CWE-862

permission

CWE-77

command

missing injection

authentication cgi

CWE-20

validation

CWE-22

traversal

input file

tensorflow absolute path

CWE-125

read

CWE-416

free

out-of-bounds use

memory memory

CWE-287
server authentication

access Bypass

Table 4. Comparison of Vulnerability Classification Results With Many Graph Embedding Models

Algorithm F micro1 F macro1 F weighted1 Accuracy

DeepWalk+logistic regression 0.909 0.863 0.907 0.909

DeepWalk+decision tree 0.921 0.873 0.920 0.921

DeepWalk+KNN 0.944 0.925 0.943 0.944

DeepWalk+random forest 0.948 0.932 0.946 0.948

Node2vec+logistic regression 0.920 0.880 0.918 0.920

Node2vec+decision tree 0.925 0.900 0.925 0.925

Node2vec+KNN 0.947 0.921 0.947 0.947

Node2vec+random forest 0.949 0.930 0.948 0.949

LINE+logistic regression 0.918 0.891 0.917 0.918

LINE+decision tree 0.926 0.878 0.925 0.926

LINE+KNN 0.946 0.923 0.946 0.946

LINE+random forest 0.958 0.940 0.958 0.958
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the best performance. This result demonstrates fully that the first-order similarity and second-order 
similarity of the keywords-LINE graph embedding algorithm are complementary, namely, local 
structure and the global structure compensate for each other.

The Experiments of Nodes’ Attention Mechanism
In order to improve the classification accuracy, we incorporated a neighbor node’s attention mechanism, 
which assigns attention weights by calculating the similarity of the second-order embedding vectors of 
node i and node j. After introducing the attention mechanism of neighbor nodes, we further evaluated 
the performance of the keywords-LINE model. Table 6 shows the impact on the keywords-LINE 
model results after adding the neighbor nodes’ attention mechanism.

To understand the specific changes for each category after the introduction of the neighbor nodes’ 
attention mechanism in more detail, we introduced confusion matrices illustrated in Figures 8 and 9.

In Figure 8, we find that some vulnerability categories, such as CWE-77 and CWE-20, perform 
poorly in classification effectiveness without the neighbor nodes’ attention mechanism. It may be 
due to the relatively small number of vulnerabilities in these categories, which are not distinguished 
effectively from other vulnerabilities, thus leading to a degradation in classification performance. 
With the introduction of the second-order attention mechanism, however, keywords-LINE can capture 
the similarity of this category better in the global structure and represent them more accurately in the 
vector space. As shown in Figure 9, we observed that the accuracy improved significantly.

Comparison of Classification Results Between Traditional 
LINE and Keywords-LINE Models
Table 7 compares the effect of the presence or absence of keywords on the evaluation metrics of the 
model through experiments.

Table 7 shows the comparison of the classification results with and without keywords. The 
keywords-LINE algorithm is better than the traditional LINE graph embedding algorithm and the 

Table 5. Comparison of the Impact of Model Completeness on Vulnerability Classification Results

Algorithm F micro1 F macro1 F weigted1 Accuracy

Keywords-LINE(1st) 0.949 0.931 0.949 0.949

Keywords-LINE(2nd) 0.838 0.824 0.838 0.838

Keywords-LINE(1st+2nd) 0.958 0.940 0.958 0.958

Table 6. Comparison of the Impact of Classification Results With Neighbor Nodes’ Attention Mechanism

Algorithm F micro1 F macro1 F weigted1 Accuracy

Keywords-LINE(1st) 0.949 0.931 0.949 0.949

Keywords-LINE(2nd) without adding attention mechanism 0.838 0.824 0.838 0.838

Keywords-LINE(2nd) adding attention mechanism 0.913 0.905 0.912 0.913

Keywords-LINE(1st+2nd) without adding attention mechanism 0.958 0.940 0.958 0.958

Keywords-LINE(1st+2nd) adding attention mechanism 0.975 0.968 0.975 0.975
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Figure 9. Joined Neighbor Nodes’ Attention Mechanism

Table 7. Comparison of Vulnerability Classification Results With and Without Keywords

Algorithm F micro1 F macro1 F weighted1 Accuracy

Only TF-IDF vulnerability describing keywords 0.961 0.925 0.960 0.961

LINE (without keywords) 0.956 0.942 0.956 0.956

Keywords-LINE 0.975 0.968 0.975 0.975

Figure 8. No Neighbor Nodes’ Attention Mechanism
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only TF-IDF keywords (we only used the part of vulnerability description in the report), specifically 
the macro-F1.

Compared with the traditional LINE graph embedding algorithm, the keywords-LINE algorithm 
has unique features for each class of vulnerabilities, improving the evaluation metrics.

Unstructured Vulnerability Description Features Representation Experiments
The experiment compares with the LDA (Aljedaani et al., 2020), LSA (Alperin et al., 2020), TF-
IDF, and our method. We used the LDA, LSA, and TF-IDF methods to extract the keywords in the 
description part of the vulnerability report and used the OVR random forest classifier to classify 
them. The evaluation metrics are shown in Table 8.

VCGERG is our method, which has the highest classification accuracy of 0.975. Different methods 
of extracting keywords may differ due to the other methods of calculating keyword weights. The LDA 
keyword extraction method tries to find the subject words behind similar vulnerability description 
documents and may perform better in discovering the potential topics of the text. The LSA downscaling 
technique based on singular value decomposition captures the likely semantic structure in the text 
and, to a certain extent, considers the semantic relationships between words. However, the TF-IDF 
method of extracting keywords more comprehensively considers the word frequency of the class of 
vulnerabilities and the inverse document frequency of the entire corpus of vulnerability descriptions. 
Hence, the keywords extracted by the TF-IDF method better reflect the unique characteristics of each 
class of vulnerabilities.

By comparing the keywords extracted by LDA and TF-IDF, we found that LDA tends to extract 
more repetitive keywords. For example, for three categories of vulnerabilities, CWE-20, CWE-22, and 
CWE-125, LDA extracts the same keyword “file,” which reduces the overall classification accuracy.

Compared with extracting keywords from vulnerability descriptions for classification using only 
the keyword extraction method, our VCGERG model shows significantly higher improvement on 
F

macro
1  than on F

micro
1 . This phenomenon indicates that the VCGERG model can ensure high 

classification stability even when there is a significant gap in the data for each type of vulnerability.

The Effect of Using Negative Sampling Loss
In this study, we used negative sampling loss optimization. Figure 10 shows the effect of using different 
negative sampling loss, maximizing the inner product loss and Jaccard loss.

The selection of the optimization loss function affects the quality of the embedding vectors 
learned by the keywords-LINE model directly. During the training process, the keywords-LINE 
model provides feedback optimization by minimizing the negative sampling loss function. This 
advantage of using a negative sampling loss function to optimize keywords-LINE may be related 
to the following reasons: Negative sampling loss uses an independent negative sampling strategy 
to select negative samples, which reflects the differences between positive and negative samples, 

Table 8. Comparison With Other Vulnerability Classification Experimental Results

Method F micro1 F macro1 F weighted1 Accuracy

LDA 0.938 0.882 0.934 0.938

LSA 0.905 0.889 0.903 0.905

TF-IDF 0.961 0.925 0.960 0.961

VCGERG 0.975 0.968 0.975 0.975
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distinguishes the class of samples from other classes of samples, and improves the accuracy 
of classification. Compared with LINE models using other loss functions, LINE models using 
negative sampling loss have higher classification stability. It is because the negative sampling loss 
function uses a random negative sample sampling strategy during the training process, comparing 
each positive sample with a negative sample, improving the robustness. Compared with other 
loss functions, it reduces the dependence on specific negative samples. It is less susceptible to 
interference from noise and outliers.

The loss curve is plotted to determine the strength of the model. In Figure 11, the loss value 
decreases to convergence as the number of training times increases. It indicates that the optimization 
algorithm has brought the loss function to a locally optimal solution. The dataset performs better on 
the model, avoiding overfitting while maintaining a specific generalization ability to provide more 
accurate results.

Figure 11. Loss Curve Graph

Figure 10. Comparison of the Impact of Different Loss Functions on Vulnerability Classification Results



International Journal of Information Security and Privacy
Volume 18 • Issue 1

19

CoNCluSIoN ANd FuTuRE WoRK

In this paper, we propose the VCGERG method to represent vulnerability reports. The VCGERG 
model constructs a graph of reports and introduces the neighboring node attention mechanism to 
represent the structural embedding vectors of the vulnerability graph based on the keywords-LINE 
graph embedding algorithm. The method can capture not only local information but also the global 
structure of the graph more accurately. We conducted experiments on the AVD vulnerability database 
using the OVR random forest multi-classifier. The model accuracy has the highest classification 
accuracy of 0.975, improved by 1.7%. At the same time, the VCGERG model improves the F

macro
1  

and F
micro

1  metrics more significantly, by 8.6% and 7.9%, respectively. This means that our method 
can deal with the challenge of the imbalance of various types of large-scale vulnerability information 
effectively.

Overall, the VCGERG method can be used as a powerful auxiliary tool for vulnerability 
management systems to correct possible human errors and improve the accuracy of vulnerability 
detection and classification. The VCGERG methodology can also be used for vulnerability scanning 
and corporate software security assessment, helping security organizations and enterprises manage 
and classify vulnerabilities more effectively and enhance the overall security of society. By improving 
the efficiency and accuracy of vulnerability detection, management, and classification, the VCGERG 
method can reduce the risks of economic loss and data leakage brought about by malicious vulnerability 
issues in governments and companies and help build a more secure and reliable digital society. In 
addition, since the VCGERG method performs more accurately and consistently in handling large-
scale multi-classification imbalance data. It also has the potential to be extended to other classification 
prediction areas.

In summary, vulnerability reports are valuable, and more attention needs to be paid to them. 
In future work, we plan to link the vulnerability codes with corresponding vulnerability reports for 
more precise analysis and classification of vulnerabilities.
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